DeepSeek-R1模型训练方法发布
DeepSeek-AI团队梁文锋及其同事17日在《自然》杂志上发表了开源人工智能(AI)模型DeepSeek-R1所采用的大规模推理模型训练方法。研究表明,大语言模型(LLM)的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM领域研究生水平问题等任务上,比传统训练的LLM表现更好。
DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。梁文锋团队报告称,该模型使用了强化学习而非人类示例来开发推理步骤,减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程,即这一模型通过解决问题获得奖励,从而强化学习效果。团队总结说,未来研究可以聚焦优化奖励过程,以确保推理和任务结果更可靠。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9% 和 79.8%,在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
关键词:
来源:科技日报
编辑:GY653
免责声明:本网站内容主要来自原创、合作媒体供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。
科技互联网排行榜
-
2018-09-28 11:31
-
2018-09-28 11:31
-
2018-09-28 11:31
-
2018-09-28 11:31
-
2018-09-28 11:31
科技互联网热门推荐
-
2018-09-28 11:31
-
2018-09-28 11:31
-
2018-09-28 11:31
-
2018-09-28 11:31
-
2018-09-28 11:31