南开大学科研团队实现多材料、跨尺寸的钙钛矿三原色电致发光器件的可控构筑|全球聚看点


(资料图片仅供参考)

量子点(quantum dot)是在把激子在三个空间方向上束缚住的半导体纳米结构。有时被称为“人造原子”、或“量子点原子”,是一种重要的低维半导体材料。半导体量子点在单电子器件、存贮器以及各种光电器件等方面具有极为广阔的应用前景。

由于量子点颗粒半径小于或者接近波尔半径,体系中的电子或空穴的运动相当于被限制在量子力学势阱中,原本在宏观体系下准连续的能级分布变得分立,量子点因此展现出一系列量子化效应,称为量子尺寸效应。因其这种独特的性质,量子点材料得到了深入研究和广泛应用。自上世纪70年代中期以来,利用量子点代替传统的半导体材料实现高性能光电器件成为非常重要的研究方向。

在传统胶体量子点合成中,为了维持其在溶剂中的稳定性,量子点表面会被引入大量有机配体。然而,有机配体的存在极大地阻碍了电荷在量子点之间的输运效率,严重限制了量子点材料在众多半导体光电器件中的应用潜力。因此,深挖量子点形成机制与材料内部载流子动力学输运行为,开发“新材料、新工艺、新器件”是实现高性能量子点光电器件、推动半导体量子点技术革新的必然需求。

南开大学化学学院研究员袁明鉴、中国科学院院士陈军带领的科研团队与加拿大多伦多大学科研人员合作,围绕高性能半导体量子点固体合成中面临的关键科学问题,通过表面有机配体化学结构理性设计,发展了高性能导电钙钛矿量子点固体薄膜制备全新策略,实现了多材料、跨尺寸的钙钛矿三原色电致发光器件的可控构筑。

在持续探索适配于器件制造工艺的钙钛矿半导体材料合成新方案的过程中,研究团队发现,通过改变有机配体结构,可以有效诱导钙钛矿材料维度信息、电子能带结构、激子效应等理化特性转变。基于上述发现,研究团队随后对配体进行理性设计,创造性地实现了在基底表面上的高质量导电钙钛矿量子点固体薄膜原位合成全新策略。

由于该策略可以有效避免传统量子点制备策略中所面临的配体易脱落、配体过多致使光学性能差、导电性差等问题,所合成的钙钛矿量子点固体薄膜具有极佳的光学与电学性质。同时,研究团队将该高性能钙钛矿量子点固体薄膜材料引入电致发光二极管器件中,并成功实现了具有高能量转换效率的三原色电致发光二极管的可控构筑。

据了解,该研究从化学学科出发,利用光学、凝聚态物理、半导体器件等交叉学科手段,成功实现半导体材料理化性质可控调节的典型案例。该成果打破了传统量子点合成策略的瓶颈,发展了全新的原位合成量子点固体薄膜新原理与新方法。

相关成果Synthesis-on-substrate of quantum dot solids于近日发表在国际期刊《自然》

资料来源:中国科学报

关键词: 电致发光 半导体材料 可以有效

来源:化工仪器网
编辑:GY653

免责声明:本网站内容主要来自原创、合作媒体供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

  • 相关推荐

相关词